<optgroup id="vveti"><sup id="vveti"></sup></optgroup>
      <input id="vveti"><ruby id="vveti"><address id="vveti"></address></ruby></input>

      <delect id="vveti"></delect>
    1. 查看: 3017|回復: 0
      打印 上一主題 下一主題

      電感選型技巧大全

      [復制鏈接]
      跳轉到指定樓層
      樓主
      發表于 2023-10-29 19:51:48 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式

      器件選型是硬件工程師的基本工作,本文主要從電感的工藝和應用出發,介紹電感如何選型。


      一、電感的基本原理

      電感,和電容、電阻一起,是電子學三大基本無源器件;電感的功能就是以磁場能的形式儲存電能量。

      以圓柱型線圈為例,簡單介紹下電感的基本原理


      如上圖所示,當恒定電流流過線圈時,根據右手螺旋定則,會形成一個圖示方向的靜磁場。而電感中流過交變電流,產生的磁場就是交變磁場,變化的磁場產生電場,線圈上就有感應電動勢,產生感應電流:

      ·電流變大時,磁場變強,磁場變化的方向與原磁場方向相同,根據左手螺旋定則,產生的感應電流與原電流方向相反,電感電流減;

      ·電流變小時,磁場變弱,磁場變化的方向與原磁場方向相反,根據左手螺旋定則,產生的感應電流與原電流方向相同,電感電流變大。


      以上就是楞次定律,最終效果就是電感會阻礙流過的電流產生變化,就是電感對交變電流呈高阻抗。同樣的電感,電流變化率越高,產生的感應電流越大,那么電感呈現的阻抗就越高;如果同樣的電流變化率,不同的電感,如果產生的感應電流越大,那么電感呈現的阻抗就越高。


      所以,電感的阻抗于兩個因素有關:一是頻率;二是電感的固有屬性,也就電感的值,也稱為電感。根據理論推導,圓柱形線圈的電感公式如下:

      可以看出電感的大小與線圈的大小及內芯的材料有關。


      實際電感的特性不僅僅有電感的作用,還有其他因素,如:

      ·繞制線圈的導線不是理想導體,存在一定的電阻;

      ·電感的磁芯存在一定的熱損耗;

      ·電感內部的導體之間存在著分布電容。

      因此,需要用一個較為復雜的模型來表示實際電感,常用的等效模型如下:

      等效模型形式可能不同,但要能體現損耗和分布電容。根據等效模型,可以定義實際電感的兩個重要參數。

      自諧振頻率(Self-Resonance Frequency)


      由于Cp的存在,與L一起構成了一個諧振電路,其諧振頻率便是電感的自諧振頻率。在自諧振頻率前,電感的阻抗隨著頻率增加而變大;在自諧振頻率后,電感的阻抗隨著頻率增加而變小,就呈現容性。

      品質因素(Quality Factor)

      也就是電感的Q值,電感儲存功率與損耗功率的比,Q值越高,電感的損耗越低,和電感的直流阻抗直接相關的參數。自諧振頻率和Q值是高頻電感的關鍵參數


      二、電感的工藝結構


      電感的工藝大致可以分為3種:

      2.1 繞線電感(Wire Wound Type)


      顧名思義就是把銅線繞在一個磁芯上形成一個線圈,繞線的方式有兩種:


      圓柱形繞法(Round Wound)

      圓柱形繞法很常見,應用也很廣,例如:

      圖片來自Bing,彩虹圈,應該是出彩中國人

      平面形繞法(Flat Wound)

      平面形繞法也很常見,大家一定見過一掰就斷的蚊香

      圖片來自Bing,蚊香


      平面形繞法優點很明顯,就是減小了器件的高度。由前文的公式可知,磁芯的磁導率越大,電感值越大,磁芯可以是

      ·非磁性材料:例如空氣芯、陶瓷芯,貌似就不能叫磁芯了;這樣電感值較小,但是基本不存在飽和電流

      ·鐵磁性材料:例如鐵氧體、波莫合金等等;合金磁導率比鐵氧體大;鐵磁性材料存在磁飽和現象,有飽和電流。


      繞線電感可提供大電流、高感值;磁芯磁導率越大,同樣的感值,繞線就少,繞線少就能降低直流電阻;同樣的尺寸,繞線少可以繞粗,提高電流。


      另外,電源設計中,經常遇到電感嘯叫的問題,本質就是磁場的變化引起了導體,也就是線圈的振動,振動的頻率剛好在音頻范圍內,人耳就可以聽見,合金一體成型電感,比較牢固,可以減少振動。

      2.2 多層片狀電感(Multilayer Type)

      多層片狀電感的制作工藝:將鐵氧體或陶瓷漿料干燥成型,交替印刷導電漿料,最后疊層、燒結成一體化結構(Monolithic)。

      引自The Wonders of Electromagnetism


      多層片狀電感的比繞線電感尺寸小,標準化封裝,適合自動化高密度貼裝;一體化結構,可靠性高,耐熱性好。

      2.3 薄膜電感(Thin Film Type)


      薄膜電感采用的是類似于IC制作的工藝,在基底上鍍一層導體膜,然后采用光刻工藝形成線圈,最后增加介質層、絕緣層、電極層,封裝成型。


      薄膜器件的制作工藝,如下圖所示

      光刻工藝的精度很高,制作出來的線條更窄、邊緣更清晰。因此,薄膜電感具有

      ·更小的尺寸,008004封裝

      ·更小的Value Step,0.1nH

      ·更小的容差,0.05nH

      ·更好的頻率穩定性

      三、電感的應用及選型


      電感,從工藝技術上,領先的基本上是三大日系廠商:TDK、Murata、Taiyo Yuden。這三家的產品線完整,基本上可以滿足大多數需求。

      三家都有相應的選型軟件,有電感、電容等所有系列的產品及相關參數曲線。

      ·SEAT 2013 - TDK

      ·Simsurfing - Murata

      ·Taiyo Yuden Components Selection Guide & Data Library


      個人感覺TDK和Murata更領先一點,從官網的質量看出來的,像Coilcraft的官網就low一點,畢竟網站也是需要投資的。

      在電路設計中,電感主要有三大類應用:

      ·功率電感:主要用于電壓轉換,常用的DCDC電路都要使用功率電感;

      ·去耦電感:主要用于濾除電源線或信號線上的噪聲,EMC工程師應該熟悉;

      ·高頻電感:主要用于射頻電路,實現偏置、匹配、濾波等電路。

      3.1 功率電感

      功率電感通常用于DCDC電路中,通過積累并釋放能量來保持連續的電流。

      功率電感大都是繞線電感,可以提高大電流、高電感;

      圖出自Murata Chip Inductor Catalog


      多層片狀功率電感也越來越多,通常電感值和電流都較低,優點是成本較低、體積超小,在手機等空間限制較大的產品中有較多應用。

      圖出自Murata Chip Inductor Catalog

      功率電感需要根據所選的DCDC芯片來選型。通常,DCDC芯片的規格書上都有推薦的電感值,以及相關參數的計算,這里不再贅述。從電感本身的角度來說明如何選型。

      上圖截圖至TY-COMPAS


      電感值

      通常應使用DCDC芯片規格書推薦的電感值;電感值越大,紋波越小,但尺寸會變大;通常提高開關頻率,可以使用小電感,但開關頻率提高會增加系統損耗,降低效率;


      額定電流

      功率電感一般有兩個額定電流,即溫升電流和飽和電流;當電感有電流通過的時候,由于損耗的存在,電感發熱而產生溫升,電流越大,溫升越大;在額定的溫度范圍內,允許的最大電流即為溫升電流。
      增加磁芯的磁導率,可以提高電感值,通常使用鐵磁性材料做磁芯。鐵磁性材料存在磁飽和現象,即當磁場強度超過一定值時,磁感應強度不在增加,即磁導率下降了,也就是電感下降了。在額定電感值范圍內,允許的最大電流即為飽和電流。

      磁滯回線:磁性材料-------鐵氧磁體,比重計,多孔性材料密度儀,液體密度計,固體顆粒體積測試儀,磁性材料密度儀。


      通常對DCDC電路設計,要計算峰值(PEAK)電流和均方根(RMS)電流,通常規格書中會給出計算公式。


      溫升電流是對電感熱效應的評估,根據焦耳定律,熱效應需要考慮一段時間內的電流對時間的積分;選擇電感時,設計RMS電流不能超過電感溫升電流。


      為了保證在設計范圍內電感值穩定,設計峰值電流不能超過電感的飽和電流。


      為了提高可靠性,降額設計是必須的,通常建議工作值應降額到不高于額定值的80%。當然降額幅度過大會大幅提高成本,需要綜合考慮。


      直流電阻

      電感的直流電阻會產生熱損耗,導致溫升,降低DCDC效率;因此,當對效率敏感時,應選擇直流阻抗低的電感,例如15毫歐。


      還有就是根據產品的應用溫度要求、是否需要滿足RoHS、汽車級Q200等標準的要求、還有PCB結構限制。


      大電流的應用,電感的漏磁就會相當可觀,會對周圍電路,例如CPU等造成影響。我之前就遇到過X86的CORE電的電感漏磁造成CPU無法啟動的現象。因此,大電流應用,應選擇屏蔽性能好的電感并且Layout時注意避開關鍵信號。


      3.2 去耦電感


      去耦電感也叫Choke,教科書上通常翻譯成扼流圈。去耦電感的作用是濾除線路上的干擾,屬于EMC器件,EMC工程師主要用來解決產品的輻射發射(RE)和傳導發射(CE)的測試問題。


      去耦電感,通常結構比較簡單,大都是銅絲直接繞在鐵氧體環上。個人覺得可以分為差模電感和共模電感。這里不再贅述共模和差模的概念。買元器件現貨上唯樣商城!

      差模電感


      差模電感就是普通的繞線電感,用于濾除一些差模干擾,主要就是與電容一起構成LC濾波器,減小電源噪聲。

      對于220V市電,差模干擾就是L相到N相之間的干擾;對POE來說,就是POE+和POE-之間的干擾;對于主板上的低壓直流電源,其實就是電源噪聲。


      差模電感選型需要注意一下幾點:

      • 直流電阻、額定電壓和電流,要滿足工作要求;

      • 結構尺寸滿足產品要求;

      • 通過測試確定噪聲的頻段,根據電感的阻抗曲線選擇電感;

      • 設計LC濾波器,可以做簡單的計算和仿真。


      磁珠(Ferrite Bead),也常用來濾除主板上的低壓直流電源的噪聲,但磁珠與去耦電感有區別的。

      • 磁珠是鐵氧體材料燒制而成,高頻時鐵氧體的磁損耗(等效電阻)變得很大,高頻噪聲被轉化成熱能耗散了;

      • 去耦電感是線圈和磁芯組成,主要是線圈電感起作用;

      • 磁珠只能濾除較高頻的噪聲,低頻不起作用;

      • 去耦電感可以繞制成較高感值,濾除低頻噪聲。


      磁珠等效電路模型

      共模電感

      共模電感就是在同一個鐵氧體環上繞制兩個匝數相同、繞向相反的線圈。


      如上圖所示的共模電感:

      ·當有共模成分流過共模電感時,根據右手定則,會在兩個線圈形成方向相同的磁場,相互加強,相當于對共模信號存在較高的感抗;

      ·當有差模成分流過共模電感時,根據右手定則,會在兩個線圈形成方向相反的磁場,相互抵消,相當于對差模信號存在較低的感抗。


      換一個方式理解:當V+上流過一個頻率的共模干擾,形成的交變磁場,會在另一個線圈上形成一個感應電流,根據左手定則,感應電流的方向與V-上共模干擾的方向相反,就抵消了一部分,減小了共模干擾。

      共模電感主要用于雙線或者差分系統,如220V市電、CAN總線、USB信號、HDMI信號等等。用于濾除共模干擾,同時有用的差分信號衰減較小。

      共模電感選型需要注意一下幾點:

      ·直流阻抗要低,不能對電壓或有用信號產生較大影響;

      ·用于電源線的話,要考慮額定電壓和電流,滿足工作要求;

      ·通過測試確定共模干擾的頻段,在該頻段內共模阻抗應該較高;

      ·差模阻抗要小,不能對差分信號的質量產生較大影響;

      考慮封裝尺寸,做兼容性設計。例如用于USB信號的共模電感,選擇封裝可以與兩個0402的電阻做兼容,不需要共模電感時,可以直接焊0402電阻,降低成本。


      下圖是某共模電感的共模阻抗和差模阻抗。


      如果共模干擾頻率在10MHz左右,濾波效果很好,但如果是100kHz,可能就沒什么效果。如果差分信號速率較高,100M以上,可能就會影響信號質量。


      3.3 高頻電感


      高頻電感主要應用于手機、無線路由器等產品的射頻電路中,從100MHz到6GHz都有應用。

      高頻電感在射頻電路中主要有以下幾種作用:

      ·匹配(Matching):與電容一起組成匹配網絡,消除器件與傳輸線之間的阻抗失配,減小反射和損耗;

      ·濾波(Filter):與電容一起組成LC濾波器,濾出一些不想要的頻率成分,防止干擾器件工作;

      ·隔離交流(Choke):在PA等有源射頻電路中,將射頻信號與直流偏置和直流電源隔離;

      ·諧振(Resonance):與電容一起構成LC振蕩電路,作為VCO的振蕩源;

      巴侖(Balun):即平衡不平衡轉換,與電容一起構成LC巴侖,實現單端射頻信號與差分信號之間的轉換。


      之前介紹的三種結構,都可以用來制作高頻電感,下面介紹下他們的特點:


      多層型

      多層型通過燒結,形成一個整體結構,或叫獨石型(Monolithic)

      圖出自Murata Chip Inductor Catalog

      多層片狀電感的,相比于其他兩種就是Q值最低,最大的優勢就是成本低,性價比高,適合于大多數沒有特殊要求的應用。TDK和Taiyo Yuden的高頻電感都只有多層型,沒有繞線型和薄膜型。


      TDK的MLK系列、Murata的LQG系列、Taiyo Yuden的HK系列,這三個系列的產品基本一樣,最便宜,性價比高。

      當然隨著工藝技術的提升,現在也有高Q值系列的多層片狀電感,例如TDK的MHQ系列、太陽誘電的HKQ系列。


      TDK的多層電感做的更好更全,還有一個MLG系列,有0402封裝,感值可以做0.3nH,Value Step 0.1nH,容差0.1nH,接近薄膜電感的性能,價格還便宜。


      繞線型


      現在的工藝水平已經越來越高,繞線電感也可以做到0402封裝。

      圖出自Murata Chip Inductor Catalog


      繞線型工藝,其導線可以做到比多層和薄膜結構粗,因此可以獲得極低的直流電阻。也意味著極高的Q值,同時可以支持較大的電流。將無磁性的陶瓷芯換成鐵氧體磁芯,可以得到較高的感值,可以應用與中頻。

      Murata的LQW系列可以做到03015封裝,最小感值1.1nH;Coilcraft的0201DS系列,可以做到0201封裝,號稱世界上最小的繞線電感。

      薄膜型


      采用光刻工藝,工藝精度極高,因此電感值可以做到很小,尺寸也可以做到很小,精度高,感值穩定,Q值較高。

      圖出自Murata Chip Inductor Catalog


      Murata的LQP系列,可以做到01005封裝,高精度產品的容差可以做到0.05nH,最小感值可以到0.1nH,這三個參數值可以說是當前電感的極限了。其他,像Abracon的ATFC-0201HQ系列也可以做到最小0.1nH。

      Murata有三種工藝的高頻電感,選擇了同感值(1.5nH)、同封裝、同容差的電感對比。

      可以看出繞線型的Q值明顯高于其他兩種,而薄膜型的電感值的頻率穩定性高于其他兩種。當然,多層型的成本明顯低于其他兩種。
      選擇高頻電感時,除了需要確定電感值、額定電流、工作溫度、封裝尺寸外,還要關注自諧振頻率、Q值、電感值容差、電感值頻率穩定性。


      電感值通常需要根據仿真、實際調試或者參考設計來確定。大多數情況,多層片狀高頻電感已能滿足要求,一些特殊場合可能需要關注:

      ·電感值較大,自諧振頻率較低,需要注意工作頻率應遠低于自諧振頻率。

      ·大功率射頻設備,PA偏置電流較大,需要選擇繞線型以滿足電流要求;同時大功率設備溫升較高,需要考慮工作溫度;

      ·對于一些寬帶設備,需要電感值在帶寬內穩定,那么應選擇薄膜電感;

      ·對于高精度的VCO電路中,作為LC諧振源,只有薄膜電感能提高0.05nH的容差;

      ·像手機、穿戴式設備,尺寸可能是最關鍵的因素,薄膜電感可能是比較好的選擇。


      有一些高頻電感具有方向性,貼片安裝的方向對電感值有一定影響,如下圖所示:

      引自Why is there a direction mark on inductors?


      可以看出,標記點朝側面,感值變化較大,所以貼片時應注意讓電感上的標記點朝上。

      另外,Layout時,應注意兩個電感不能緊鄰著放置,至少距離20mil以上。原因就是磁場會相互影響,從而影響感值,參考前文共模電感示意圖。

      結語:選型要清楚器件的原理和應用,綜合考慮成本、降額、兼容性等多種因素。


      您需要登錄后才可以回帖 登錄 | 立即注冊

      本版積分規則

      關于我們  -  服務條款  -  使用指南  -  站點地圖  -  友情鏈接  -  聯系我們
      電子工程網 © 版權所有   京ICP備16069177號 | 京公網安備11010502021702
      快速回復 返回頂部 返回列表
      亚洲日韩女同一区二区三区_久久久久久精品免费毛片_欧美日韩中文国产一区_肉末茄子的做法教学视频

        
        <optgroup id="vveti"><sup id="vveti"></sup></optgroup>
        <input id="vveti"><ruby id="vveti"><address id="vveti"></address></ruby></input>

        <delect id="vveti"></delect>